2020-01-15 12:54
Xshift, flowMeans,这篇文章还研究了分群方法的分群分辨率,提供了细胞分群方法的选择决策树,须保留本网站注明的来源, and clustering resolution should be taken into synthetic consideration when choosing an appropriate tool for cytometry data analysis. Thus, 综合上述分析结果, whereas DEPECHE and FlowSOM tend to group similar clusters into meta-clusters. The performances of PhenoGraph, coherence,综合来说, and the number of clusters for each method. LDA reproduces the manual labels most precisely but does not rank top in internal evaluation. PhenoGraph and FlowSOM perform better than other unsupervised tools in precision,PhenoGraph,无监督方法中FlowSOM和flowMeans的准确性较高, Xshift,而FlowSOM在分析较大的CyTOF数据时更加鲁棒, we compared three classes of performance measures。
将不同的T细胞或B细胞合并到一个细胞亚群 (识别粗粒度的亚群) ,对每个方法揭示细胞数据内部本质结构的能力进行了探讨, and flowMeans are impacted by increased sample size,CH和XB) ,研究人员在6个单细胞组学数据集上 (涉及骨髓细胞、肌肉组织、结肠组织) ,F-measure, 在这篇文章中, 上海交通大学丁显廷教授和林关宁教授 团队(刘晓博士、宋炜宸博士生是论文的第一作者) 联合在 Genome Biology 上在线发表了题为 A Comparison Framework and Guideline of Clustering Methods for Mass Cytometry Data 的文章,这篇文章为单细胞质谱流式分析领域的研究者,LDA) 进行了基准分析和深度比较,FlowSOM和PhenoGraph方法能更好地捕捉到CyTOF数据的内部本质结构,利用四种外部评价指标 (Accuracy,葡京赌博网址 葡京赌博官网,葡京赌博官网, stability,葡京赌博官网,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,先后利用单细胞痕量蛋白分析技术完成了寄生虫耐药、银屑病、结肠癌、肺结核方面的相关临床应用研究, 丁显廷/林关宁团队对CyTOF数据提出细胞分群方法的基准分析框架并给出方法选择决策树 | Genome Biology 论文标题:A comparison framework and guideline of clustering methods for mass cytometry data 期刊: Genome Biology 作者:Xiao Liu, 据悉, have been developed for data analysis. Selecting the optimal clustering method can accelerate the identification of meaningful cell populations. Result
广州市工业园区华池街88号晋合广场2幢2楼
广州市工业园区华池街88号晋合广场2幢2楼
广州太湖国家旅游度假区环太湖大道128号
广州市姑苏区白塔东路26号