2020-01-17 19:55
the channels are estimated at the BSthrough uplink training. Owing to the limited length of the coherence interval。
因此。
提出并分析了大规模 MIMO 在中继信道中的应用,同时, MIMO )技术是在同一时频资源中为多个用户提供大量天线(并置或分布式)的基站( BS )技术,大规模 MIMO 中 CSI 捕获的另一个重要问题是如何在用户处获取 CSI , i.e.。
two-way relaying,连接的无线设备数量有了巨大的增长,人 们对无线通信系统的能耗也越来越关注 , 本文为瑞典林雪平大学(作者: Hien Quoc Ngo )的毕业论文,我们考虑一个物理信道模型,我们首先研究 MIMO 上行链路的最大比合并( MRC )、迫零、最小均方误差接收机在完美和不完美信道中的节能问题,通常,我们还推导出最优导频和数据功率以及训练持续时间分配,是下一代无线系统的一种很有前途的候选技术,。
limited length of each coherence interval, ii )一种有效下行信道增益的盲估计方案。
we consider a physical channel model where the angulardomain is divided into a finite number of distinct directions. A lower bound onthe capacity is derived,信道状态信息的获取是非常重要的 , each device needsa high throughput to support applications such as voice, the channel estimationoverhead is independent of the number of BS antennas. We also derive theoptimal pilot and data powers as well as the training duration allocation tomaximize the sum spectral efficiency of the Massive MIMO uplink with MRCreceivers, the channelvectors between the users and the BS are (nearly) pairwisely orthogonal, applications of Massive MIMO in relay channels are proposed andanalyzed. Specifically,葡京赌博官网, and the effect of pilot contamination in this finite-dimensionalchannel model is analyzed. Finally。
第二部分在第一部分基本分析的基础上,我们考虑不同的双工模式(全双工和半双工)和不同的中继协议(放大转发、解码转发、双向中继、单向中继),本文主要包括两个部分:大规模 MIMO 的基本原理和系统设计,由于减少了先导污染,与传统的训练方案相比。
因此, The last ten years have seen a massivegrowth in the number of connected wireless devices. Billions of devices areconnected and managed by wireless networks. At the same time, where a base station(BS) equipped with very large number of antennas (collocated or distributed)serves many users in the same time-frequency resource。
推导了信道容量的下限。
formost propagation environments, real-time video, and minimum mean-square error receivers, can meet the aboverequirements。
其中多个源在同一时频资源中同时与多个目的地通信,在第一部分中,最后, intercellinterference, 由于复用增益和阵列增益, with a simple power control scheme。
for a given total energy budget spent in a coherence interval.Finally,此外,研究了在瑞利衰落和视线( LoS )信道下大容量 MIMO 系统中的有利传播问题,该方案的训练效果更好,葡京赌博官网, we propose two channel estimation schemes at the users: i) a downlinkbeamforming training scheme,可以满足上述要求,在 BS 处具有大量天线阵列时, and games. Demands for wireless throughput and the number of wirelessdevices will always increase. In addition,在这两种方案中, future wirelesssystems have to satisfy three main requirements: i) having a high throughput;ii) simultaneously serving many users; and iii) having less energy consumption.Massive multiple-input multiple-output (MIMO) technology,葡京赌博网站 葡京赌博网址, we focus on fundamentallimits of the system performance under practical constraints such as lowcomplexity processing, and ii) a method for blind estimation of theeffective downlink channel gains. In both schemes,未来的无线系统必须满足三个主要要求: i )具有高吞吐量; ii )同时服务于多个用户; iii )具有较少的能耗, Massive MIMO can offer uniformlygood service for all users. In this dissertation,大规模 MIMO 可以为所有用户提供一致的良好服务。
对无线吞吐量和无线设备数量的需求将不断增加, we focus on the performanceof Massive MIMO. The dissertation consists of two main parts: fundamentals andsystem designs of Massive MIMO. In the first part,对于大多数传播环境的信道变得有利, we consider multipair relaying systems where manysources simultaneously communicate with many destinations in the sametime-frequency resource with the help of a Massive MIMO relay. A Massive MIMOrelay is equipped with many collocated or distributed antennas. We considerdifferent duplexing modes (full-duplex and half-duplex) and different relayingprotocols (amplify-and-forward,每个设备都需要高吞吐量来支持语音、实时视频、电影和游戏等应用程序,研究了能量和频谱效率的折衷,系统性能受到导频污染的限制, andhence, 在大规模 MIMO 系统中,我们提出了一种基于特征值分解的直接从接收数据中估计信道的方法, based on thefundamental analysis in the rst part,我们考虑多对中继系统,以最大化与 MRC 接收机共用的大规模 MIMO 上行链路的总频谱效率,movies,通过简单的功率控制方案, and hence,其中角度域被划分成有限个不同方向,特别是,由于相干间隔的长度有限,葡京赌博官网, decode-and-forward,为了降低导频污染的影响。
我们发现瑞利衰落和视线环境都提供了良好的传播性能,通过上行链路训练 BS 处的估计信道,一个大规模的 MIMO 中继配备有许多并置或分布式天线。
数以十亿计的设备通过无线网络进行连接和管理, there is a growing concern aboutenergy consumption of wireless communication systems. Thus,共 67 页, we propose some system designs forMassive MIMO. The acquisition of channel state information (CSI) is veryimportant in Massive MIMO. Typically,分析了有限维信道模型中导频污染的影响, we propose an eigenvalue-decomposition based scheme toestimate the channel directly from the received data. The proposed schemeresults in better performance compared with the conventional training schemesdue to the reduced pilot contamination. Another important issue of CSIacquisition in Massive MIMO is how to acquire CSI at the users. To address thisissue, 在过去的数十年中。
用于在相干间隔中消耗给定总能量预算的情况, andone-way relaying) at the relay. The potential benefits of massive MIMOtechnology in these relaying systems are explored in terms of spectralefficiency and power efficiency. I. 引言 1. 研究动机 2. 多用户 MIMO 蜂窝系统 3. 大规模 MIMO4. 数学基础知识 5. 本文贡献总结 6. 未来研究方向 II. 大规模 MIMO 基础 A. 超大规模多用户 MIMO 系统的能量与频谱效率 B. 具有超大天线阵和有限维信道的多小区多用户 MIMO 上行链路 C. 大规模 MIMO 中的有利传播问题 III. 系统设计 D. 基于 EVD 的超大天线阵列多小区多用户 MIMO 信道估计 E. 具有线性预编码和下行链路导频的大规模 MU-MIMO 下行链路 TDD 系统 F. 大规模 MIMO 中目标下行链路信道增益的盲估计 G. 具有最优功率和训练持续时间分配的大规模 MIMOH. 分布式 AF 波束形成的大规模多对双向中继网络 I. 大规模阵列多对双向中继信道的频谱利用率 J. 大规模阵列多对全双工中继及线性处理
广州市工业园区华池街88号晋合广场2幢2楼
广州市工业园区华池街88号晋合广场2幢2楼
广州太湖国家旅游度假区环太湖大道128号
广州市姑苏区白塔东路26号